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Abstract

I review assumptions about the missing-data mechanisms that underlie
methods for the statistical analysis of data with missing values. I describe
Rubin’s original definition of missing at random (MAR), its motivation and
criticisms, and his sufficient conditions for ignoring the missingness mecha-
nism for likelihood-based, Bayesian, and frequentist inference. Related defi-
nitions, including missing completely at random, always MAR, always miss-
ing completely at random, and partially MAR, are also covered. I present a
formal argument for weakening Rubin’s sufficient conditions for frequen-
tist maximum likelihood inference with precision based on the observed
information. Some simple examples of MAR are described, together with
an example where the missingness mechanism can be ignored even though
MAR does not hold. Alternative approaches to statistical inference based on
the likelihood function are reviewed, along with non-likelihood frequentist
approaches, including weighted generalized estimating equations. Connec-
tions with the causal inference literature are also discussed. Finally, alterna-
tives to Rubin’s MAR definition are discussed, including informative miss-
ingness, informative censoring, and coarsening at random. The intent is to
provide a relatively nontechnical discussion, although some of the underly-
ing issues are challenging and touch on fundamental questions of statistical
inference.
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1. INTRODUCTION: RUBIN’S DEFINITION OF MISSING AT RANDOM

In 1974 I was a statistics doctoral student at Imperial College, London, and Professor D.R. Cox,
the editor of Biometrika, handed me my first journal article to referee. It was called “Inference and
Missing Data” and was written by a statistician called Don Rubin, whom I had never heard of—I
knew very little about the field of statistics at that time. Rubin’s paper treated the missingness
indicator variables as part of a statistical model and laid out sufficient conditions for ignoring the
missingness mechanism for different types of statistical inference. I struggled mightily with the
paper, in part because of some of the subtle questions that I review here. Despite the reservations
in my lengthy referee’s report, Professor Cox wisely decided to publish the paper, which became a
highly cited, landmark article on statistical inference withmissing data (Rubin 1976), together with
a discussion from the referee (Little 1976). Rubin and I later collaborated on our book on missing
data, now in the third edition (Little & Rubin 2019). In that edition, we updated our discussion
of assumptions about missingness in previous editions, and the topic continues to create some
confusion and controversy. The main goal of this article is to describe and hopefully shed light on
these assumptions.

Before Rubin’s seminal paper, missing data were generally handled by simple ad hoc methods
like complete-case (CC) analysis, where units with missing values are deleted and analysis is based
on the remaining cases, or naïve imputation, where missing values of a variable are replaced by
estimates such as the means of recorded values of that variable, predictions from a regression on
observed variables, or the last recorded value in longitudinal studies. Early systematic attempts to
account for missing data in statistical inferences were based on the method of maximum likeli-
hood (ML) (see, for example, Anderson 1957, Hartley 1958, Trawinski & Bargmann 1964, Afifi &
Elashoff 1966). In Section 2, I discuss assumptions underlying likelihood-based methods for han-
dling inference from data sets with missing values; these methods include ML, Bayesian methods,
and model-based multiple imputation (MI), where multiple data sets are created with missing val-
ues replaced by draws from their predictive distribution, with inference based on Rubin’s (1987)
MI combining rules.

In Section 3, I discuss assumptions underlying other inferential approaches—namely, CC anal-
ysis and weighted CC analysis where units are weighted by the inverse of estimates of their re-
sponse probabilities. These methods include inverse-probability weighted generalized estimating
equations (GEE) and extensions where the estimates are augmented by predictions of the missing
values.

In Section 4, I discuss some alternative definitions of missingness mechanisms, including infor-
mative missing data, definitions of MAR for parameter subsets, and ignorable coarsening mecha-
nisms. Section 5 provides some concluding remarks.

2. LIKELIHOOD INFERENCE WITH MISSING DATA

2.1. Introduction

Let Y = (yi j ) denote an (n× p) rectangular data set without missing values, with ith row yi =
(yi1, . . . , yip) where yi j is the value of variable Yj for unit i. With no missing values, likelihood
inference is based on a statistical model for Y, which asserts that Y is sampled from a distribution
with density fY (y | θ ) indexed by unknown parameters θ . The notation omits any fixed covariates
X for simplicity. The likelihood of θ is

LY (θ | ỹ) = const. × fY (ỹ | θ ),
where, here and elsewhere, a tilde refers to the realized value of a random variable, so that ỹ denotes
the observed value of Y. The argument of the likelihood LY is θ rather than ỹ, and the constant can
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depend on ỹ but not on θ . The ML estimate of θ maximizes this function. Large-sample inference
can be based on a normal distribution centered at the ML estimate, with a covariance matrix
based on the observed or expected information matrix, or some approximation thereof. Bayesian
inference is based on the posterior distribution of θ , which is proportional to LY (θ |ỹ) multiplied
by a prior distribution π (θ ) for the parameters.

With missing data, define the response indicator matrix R = (ri j ), such that ri j = 1 if yi j is
observed and ri j = 0 if yi j is missing; alternatively, 1 − ri j is called the missingness indicator for
yi j . Here, an unobserved value of yi j is considered missing if it would be meaningful for analysis
if observed (Little & Rubin 2019), in the sense of being relevant for the question of interest.
For example, in a repeated measures setting, blood pressure data that are not observed because
participants die are not considered missing since they are not meaningful for analysis—literally,
their blood pressures are zero, but including values of zero is clearly not useful, and imputing a
“blood pressure if the individual had not died” is at best questionable. Fully observed covariates X
can be fixed and are implicit in the notation, but covariates with missing values need to be included
in the set of Y variables.

Using the notation1 in Mealli & Rubin (2015), let Y(1) denote the observed components
of Y and let Y(0) denote the missing components of Y. In a slightly informal notation, rewrite
fY (y | θ ) as fY (y(1), y(0) | θ ). The natural likelihood with missing data is obtained by integrating the
missing values y(0) of Y out of the density fY (y(1), y(0) | θ )—that is,

Lign(θ | ỹ(1) ) =
∫

fY (ỹ(1), y(0) | θ )dy(0). 1.

ML estimates thenmaximize this function with respect to θ . Estimates of precision and asymptotic
normal-based tests and confidence intervals can be based on standard ML theory, applied to this
likelihood. Unlike earlier ad hoc imputation approaches, these inferences take into account the
loss of information from the missing data.

Rubin (1976) noted that this approach not only assumes that the model fY (y | θ ) is well spec-
ified but also requires assumptions about the missingness mechanisms that led to missing values.
Rubin (1976) described inferences based on the likelihood in Equation 1 as ignoring the miss-
ingness mechanism—hence the label “ign” for L in this equation. He articulated the assumptions
implied by basing inference on Equation 1 by formulating a model for the missing-data mecha-
nism, characterized by the (discrete) conditional distribution of R given Y, say fR |Y (R |Y,φ), where
φ denotes unknown parameters. The full likelihood based on the observed valuesY(1) = ỹ(1),R = r̃
is then obtained by integrating the missing data y(0) out of the density of the joint distribution of
Y and R—that is,

Lfull (θ ,φ | ỹ(1), r̃) =
∫

fY (ỹ(1), y(0) | θ ) fR |Y (r̃ | ỹ(1), y(0),φ)dy(0), 2.

considered as a function of the parameters (θ ,φ). Rubin called the missingness mechanism ignor-
able for likelihood inference if inference about θ based on Equation 1 was the same as inference
about θ based on Equation 2.

Rubin then specified sufficient conditions under which various forms of inference can be based
on the ignorable likelihood (Equation 1) rather than the full likelihood (Equation 2). I now discuss
these conditions and assumptions.

1The notation yobs and ymis for observed and missing data is evocative and has been used extensively by myself
and others, but is avoided here since it can be misinterpreted as implying conditioning on the set of observed
variables; see Seaman et al. (2013) or Little & Rubin (2019).
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2.2. Sufficient Conditions for Ignoring the Missingness Mechanism
for Bayesian Inference

Sufficient conditions for ignoring the missingness mechanism are easiest to understand for pure
likelihood inference, meaning inference based on the likelihood function (Equation 1) and ratios
of likelihoods for different values of the parameters. I focus here on Bayesian inference, the most
widely applicable form of pure likelihood inference, while noting that non-Bayesian versions of
pure likelihood inference do have advocates. The sufficient conditions for Bayesian inference are
contained in the following lemma.

Lemma 1. The following two conditions are sufficient for ignoring the missingness mech-
anism for Bayesian inference:

1. The missing data are missing at random (MAR), defined as

fR |Y (R = r̃ |Y(1) = ỹ(1),Y(0) = y(0),φ)
= fR |Y (R = r̃ |Y(1) = ỹ(1),Y(0) = y∗(0),φ) for all y(0), y

∗
(0) and φ.

3.

In other words, the function fR |Y (R = r̃ |Y(1) = ỹ(1),Y(0) = y(0),φ), considered as a
function of Y(1) and Y(0), can depend on the observed data, Y(1) = ỹ(1), but not on the
missing data,Y(0).

2. The parameters θ and φ are assumed to be a priori independent.

Proof. Suppose we adopt a full model for Y and R as in Equation 2 and further assume a
prior distribution π (θ ,φ), where θ and φ are a priori independent—that is,

π (θ ,φ) = π1(θ )π2(φ).

Under MAR, Equation 3, the full likelihood, factorizes as

Lfull (θ ,φ | ỹ(1), r̃) = Lign(θ | ỹ(1) ) × Lrest (φ | ỹ(1), r̃) for all θ ,φ. 4.

Under (a) and (b), the full posterior distribution is

p(θ ,φ | ỹ(1), r̃) = const. × π (θ ,φ) × Lfull (θ ,φ | ỹ(1), r̃)
= const. × [

π1(θ ) × Lign(θ | ỹ(1) )
]× [

π2(φ) × Lrest (φ | ỹ(1), r̃)
]
for all θ ,φ.

5.

Thus, θand φ are a posteriori independent, and the posterior distribution of θ is

p(θ | ỹ(1), r̃) = const. × π1(θ ) × Lign(θ | ỹ(1) ) for all θ ,

that is, this posterior distribution is based on the ignorable likelihood, which does not in-
volve the model for the missingness mechanism. �
In large samples and for prior distributions that do not restrict the parameter space, the pos-

terior distribution of the parameters is dominated by the likelihood. The posterior distribution of
θ ignoring the missingness mechanism can then be based on the normal approximation:

(θ | data) ∼ N
(
θ̂ , I−1

ign(θθ )

)
, 6.

where N(a,B) denotes the multivariate normal distribution with mean a and covariance matrix B,
θ̂ maximizes the ignorable likelihood Lign(θ | ỹ(1) ), and Iign(θθ ) is the observed information

Iign(θθ ) = −Dθθ

(
Lign(θ | ỹ(1) )

) ∣∣
θ=θ̂ , 7.

where Dθθ denotes the second derivative of the argument with respect to θ . For large-sample
Bayesian inference, the conditions of Lemma 1 for ignoring the missingness mechanism can be
weakened:

Lemma 2. The following are sufficient conditions for large-sample Bayesian inference
based on Equation 6, ignoring the missingness mechanism:
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1. The missing data are MAR, as in Equation 3, and
2∗. (Distinctness). The parameters θ and φ are distinct, in the sense of having distinct

parameter spaces. Formally, if �(θ ,φ) is the parameter space of θ and φ, then �(θ ,φ) =
�θ × �φ .

The condition (2∗) is weaker than a priori independence (2) because it is necessary but not
sufficient for θ and φ to be a priori independent—even if θ and φ have distinct parameter spaces,
they could be assigned dependent prior distributions. If the distinctness condition seems abstract,
in many situations it amounts to the parameters θ and φ not having a subset of parameters in
common. For example, in shared parameter models for longitudinal data (e.g., Little 1995), the
set of parameters that control missingness are also included as parameters in the model for the
variables Y. It is often reasonable to model data so that distinctness holds; if MAR holds but Dis-
tinctness is violated, then Bayesian inference based on Equation 1 remains valid if interpreted as
excluding the information about θ from the missingness mechanism. For these reasons, MAR is a
more important condition than distinctness in practice.

I now consider asymptotic frequentist inference based onML. Forms of small-sample frequen-
tist inference are considered in Section 3.

2.3. Sufficient Conditions for Ignoring the Missingness Mechanism
for Asymptotic Frequentist Maximum Likelihood Inference

Asymptotic frequentist ML inference ignoring the missingness mechanism can be based on the
following approximation of the sampling distribution of θ̂ :(

θ̂ | data
)

∼ N
(
θ , I−1

ign(θθ )

)
, 8.

where the roles of θ and θ̂ in Equation 6 are reversed. In Equation 8, the covariance matrix is
based on the observed information, Equation 7; I consider other choices later. A difficult question
is whether the MAR and distinctness conditions of Section 2.1 are also sufficient for frequentist
inference based on Equation 8 to be valid.

The definition of MAR (Equation 3) is for all values of the unknown quantities y(0) and φ,
for fixed (ỹ(1), r̃). To quote Mealli & Rubin (2015, pp. 996–97), Equation 3 is “a statement about
evaluating a function at a specific value of the indicator for observed and missing values, r̃, and of
the observed data values, ỹ(1), to see if it varies with possible values of themissing values, y(0), for any
value of the parameter φ; it is not a statement about conditional independence.”Unlike Equation 3,
Equation 8 concerns the distribution of θ̂ in repeated sampling, with values of (y(0), y(1), r) other
than those in the realized data set. For the sampling distribution of θ̂ not to involve the model for
the missingness mechanism, the following stronger condition, which Mealli & Rubin (2015) call
missing always at random (MAAR), is required:

fR |Y (R = r |Y(1) = y(1),Y(0) = y(0),φ)
= fR |Y (R = r |Y(1) = y(1),Y(0) = y∗(0),φ) for all r, y(1), y(0), y

∗
(0) and φ.

9.

The “always” here refers to all possible values of (y(0), y(1), r) in repeated sampling from the dis-
tribution of {R,Y }. Seaman et al. (2013) make a similar distinction between Equations 3 and 9,
calling the condition in Equation 3 realized MAR and the condition in Equation 9 everywhere
MAR. They discuss confusion in the literature arising from failure to distinguish between the
two conditions, and they describe MAAR and distinctness as sufficient conditions for ignoring the
missingness mechanism for asymptotic frequentist ML inference.
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MAAR is a stronger condition than MAR—that is, MAAR implies MAR but MAR does not
imply MAAR—and it is harder to assess because we don’t know which patterns of missing values
and associated values of y(0) might arise in repeated sampling. I argue in Lemma 3 that MAR
remains sufficient for asymptotic frequentistML inference, even though the sampling distribution
of θ̂ might depend on the missingness mechanism in that case. Kenward & Molenberghs (1998)
make a similar argument, informally, without proof.

Lemma 3. The conditions 1 and 2 of Lemma 1, namely, MAR and distinctness, are suf-
ficient for ignoring the missingness mechanism for asymptotic frequentist ML inference
with precision based on the inverse of the observed information, as in Equation 8.

Proof. Suppose we posit a full model for Y and R, with distinct and identified parameters
(θ ,φ). Asymptotic inference could then be based on the normal approximation:(

θ − θ̂

φ − φ̂

)
∼ N

⎡
⎣(0

0

)(
Ifull(θθ ) Ifull(θφ)

Ifull(θφ) Ifull(φφ)

)−1
⎤
⎦ , 10.

where (θ̂ , φ̂) are ML estimates of (θ ,φ), and

Ifull(θθ ) = −Dθθ

(
logLfull (θ ,φ | ỹ(1), r̃)

) ∣∣
θ=θ̂ ,φ=φ̂ , Ifull(θφ) = −Dθφ

(
logLfull (θ ,φ | ỹ(1), r̃)

) ∣∣
θ=θ̂ ,φ=φ̂ ,

and Ifull(φφ) = −Dφφ

(
logLfull (θ ,φ | ỹ(1), r̃)

) ∣∣
θ=θ̂ ,φ=φ̂

are the components of the observed information evaluated at ML estimates of the
parameters.

Under MAR, Lfull factors, as in Equation 4, into the product of a term for θ and a term
for φ. Given that θ and φ are distinct, the ML estimate θ̂ maximizes Lign(θ | ỹ(1) ), and

Ifull(θθ ) = −Dθθ

(
logLfull (θ ,φ | ỹ(1), r̃)

) = −Dθθ

(
logLign(θ | ỹ(1) )

) = Iign(θθ ); Ifull(θφ) = 0.

Thus, tests and confidence intervals for θ based on Equation 10 are the same as correspond-
ing tests and confidence intervals based on Equation 8, when evaluated using the observed
data. This is despite the fact that the sampling distribution of (θ̂ , φ̂) is only ignorable under
the strongerMAAR assumption in Equation 9; for other repeated samples whereMAR is vi-
olated, the observed information matrix in Equation 9 would not be block diagonal and the
full model is needed, but for the realized sample, the information matrix is block diagonal
under MAR and distinctness. Indeed,ML inference ignoring the missingness mechanism is
not affected by misspecifying the model for the missingness mechanism, because this model
does not enter into the inference for the data at hand. �
Lemma 3 also holds with the covariance matrix in Equation 10 replaced by the inverse of

the sandwich estimator, or the covariance matrix from bootstrap samples. However, the result
would not hold if the observed information were replaced by the expected information, which in
general requires the stronger assumption of missing completely at random (MCAR), discussed in
Section 3. This is a serious limitation (Kenward & Molenberghs 1998).

2.4. Unit Missing at Random and Missing Always at Random

The definitions in Section 2 are for the matrices Y and R, but they are easier to interpret if we can
assume independence between the individual units, or rows, of the matrix. Following Mealli &
Rubin (2015), suppose now that the units are exchangeable and can be modeled as independent,
conditional on parameters θ ,φ and any fully observed variables X. That is,

fY,R(Y,R |X, θ ,φ) =
n∏
i=1

fY (yi | xi, θ ) fR(ri | xi, yi,φ),
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where the product is over n units in the data matrix. For a general pattern of missingness, let P
denote the set of missing-data patterns that have positive probability of occurrence in repeated
sampling, and let P̃ ⊂ P be the patterns in the actual data set. ThenMAAR becomes unit MAAR,

fR |Y (ri | xi, y(1i), y(0i),φ) = fR |Y (ri | xi, y(1i), y∗(0i),φ) for all ri, xi, y(1i), y(0i), y∗(0i),φ and i ∈ P , 11.

and MAR becomes unit MAR,

fR |Y (ri = r̃i | x̃i, ỹ(1i), y(0i),φ) = fR |Y (ri = r̃i | x̃i, ỹ(1i), y∗(0i),φ) for all y(0i), y∗(0i),φ and i ∈ P̃ , 12.

which is weaker than MAAR in that it is a condition on the function fR |Y only for the observed
values of (r̃i, ỹ(1i), x̃i ), i = 1, . . . , n.

The following example illustrates the distinction between unit MAR and MAAR in a well-
known situation.

Example 1 (Comparing means of two independent normal samples with potentially
missing data). Consider the familiar example of comparing the means of two indepen-
dent normal samples with the same variance. The hypothetical complete data consist of
(yi, xi ), i = 1, . . . , n, where yi is the outcome and xi = j for group j, j = 1 or 2. The model
for Y given X is that (yi | xi = j, θ )∼ind N(μ j , σ 2), the normal distribution with mean μ j

and variance σ 2, and θ = (μ1,μ2, σ 2). With no missing data, classical frequentist inference
(tests and confidence intervals) for the difference in means δ = μ2 − μ2 is based on the piv-
otal quantity t = ((ȳ2 − ȳ1) − δ)/(s

√
1/n1 + 1/n2), which has a Student’s t-distribution with

ν = n1 + n2 − 2 degrees of freedom; here ȳ j is the sample mean of Y and nj is the number
of units with xi = j, and s2 is the pooled sample variance. In particular, a 95% confidence
interval for δ is

I0.95(δ) = ȳ2 − ȳ1 ± tν,0.975
(
s
√
1/n1 + 1/n2

)
, 13.

where tν,0.975 is the 97.5 percentile of the t-distribution with ν degrees of freedom.
Equation 13 is also the 95% Bayesian credible interval under the Jeffreys prior distribu-
tion π (μ1,μ2, log σ 2) ∝ const.

Suppose X is always observed, but Y potentially has missing values, so ri = 1 if yi is ob-
served and ri = 0 if yi is missing. We assume that

Pr(ri = 1 | xi, yi,φ) = h1(xi,φ), 14.

where h1 is an unknown function. This means that missingness is allowed to depend on X,
that is, the response rates in the two groups can differ, but missingness does not depend
on the value of Y. Then missingness is MAR and MAAR, since the probability of response
depends on the group indicator, which is always observed. Because units with yi missing
provide no information for the regression of Y on X, the usual t-inference methods can be
applied to the set of units where Y is observed, provided at least one unit is observed in each
group and at least three units overall, so that the pooled variance has at least one degree of
freedom.

Suppose now that we allow missingness to depend on both X and Y, as in:

Pr(ri = 1 | xi, yi,φ) = h1(xi, yi,φ).

As a concrete example, suppose that missingness is a form of censoring on Y in the group
with X = 2. That is,

h(xi, yi,φ) =

⎧⎪⎨
⎪⎩
1, if xi= 1
1, if xi = 2 and yi ≤ φ,
0, if xi = 2 and yi > φ.

15.
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For example, the values of Y in group 2 are measured using a flawed instrument that does
not return values greater than an unknown φ. This mechanism is not unit MAAR, but it is
unit MAR if all the n values of yi happen to be observed in the realized data set. In that case
the data set has no missing values. The standard t-based confidence interval (Equation 13)
for δ can be computed, but it is not valid in a frequentist sense since, in repeated samples,
missing values of Y in groups with X = 2 are missing not at random (MNAR). The sample
mean ȳ2 is a biased estimate of μ2, with a bias that depends on φ; as φ increases, the bias
decreases, and the likelihood that no values of Y are missing increases. Asymptotically ȳ2
is consistent for μ2 and the standard frequentist analysis is valid, but a satisfactory small-
sample frequentist approach seems lacking, particularly when φ is unknown.

Although not a valid 95% confidence interval, the standard t-interval (Equation 13) is a
valid 95% credibility interval in a Bayesian sense because it is valid under MAR provided
that θ and φ are a priori independent, often a reasonable assumption.With MNARmissing
values, a Bayesian analysis can be constructed by adding a prior distribution for φ (see,
for example, Little & Rubin 2019, chapter 15), although (as with any Bayesian analysis) its
small sample validity is dependent on correctness of the model and judicious choices of
prior distributions.

In summary, for the mechanism (Expression 15) but all the values of Y observed, the standard
analysis is valid for pure likelihood or Bayesian inference, but the frequentist analysis is invalid
because MAAR is violated. For a similar example, readers are directed to Heitjan (2004). This
example reflects some of the general philosophical debates about the relevance of hypothetical
samples that are not observed for the inference based on the sample at hand.

The literature lacks comparisons of MAR and MAAR for more general patterns. Mealli &
Rubin (2015) suggested that for a general pattern,MAAR implies thatmissingness can only depend
on fully observed variables, but in a correction, Mealli & Rubin (2016) noted that this assertion
required the (strong) assumption of conditional independence of the response indicators for each
variable given data Y.

2.5. The Nature of Unit Missing at Random and Its Meaning for Monotone
and Nonmonotone Missingness Patterns

In this section I discuss the meaning of unit MAR for some simple patterns of missing data and
make some additional comments.

Example 2 (MAR for monotone data). Suppose the data on p variables (Y1, . . . ,Yp)
can be organized (possibly after reordering the variables) to have the monotone data pat-
tern of Figure 1. In words, if the kth variable is missing for unit i, that is, r̃ik = 0, then
r̃i(k+1) = · · · = r̃ip = 0, that is, the variables k+ 1, . . . , p are also missing. A special case is
univariate nonresponse, where missingness is confined to the last variable. The columns in
Figure 1 could be multivariate. This monotone missingness pattern arises from attrition in
longitudinal studies, where units drop out prior to the end of the study and do not return.
Many longitudinal studies have a prevailingly monotone pattern, except for a few cases that
are missing intermittently.

It is easily seen that missingness for a monotone pattern is unit MAR if response to the kth
variable depends on the variables 1, . . . , k− 1 (the history up to k) but not on variables k, k+
1, . . . , p. That is,

Pr(r̃ik = 1 | r̃i1 = r̃i2 = · · · = r̃i,k−1 = 1, ỹi(1), yi(0),φ) = hk(ỹi1, . . . , ỹi,k−1,φ), k = 2, . . . , p,
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Y1 Y2

?
?

?

Y3 Yp

Figure 1

Monotone pattern of missing data.

for any functions h2, . . . , hp.
From a causal perspective, the idea that missingness at time t can depend only on history up to

time t seems understandable. The term “sequentially ignorable nonresponse” is sometimes used
to describe MAR for a monotone missingness pattern.

Example 3 (MAR for nonmonotone data: bivariate data with a general pattern). Unit
MAR for nonmonotone data is less intuitive. Consider the simplest case of bivariate data
with a general missingness pattern. Let Y = [(yi1, yi2), i = 1, . . . , n] denote an independent
sample from two variablesY1,Y2 with probability density fY (yi1, yi2 | θ ) indexed by unknown
parameters θ . If all four patterns arise in the data, unit MAR implies that, for all yi,

Pr
(
ri = (0, 0) | ỹi(1), yi(0)

) = h00
Pr
(
ri = (1, 0) | ỹi(1), yi(0)

) = h10(ỹi1)
Pr
(
ri = (0, 1) | ỹi(1), yi(0)

) = h01(ỹi2)
Pr
(
ri = (1, 1) | ỹi(1), yi(0)

) = 1 − h00 − h10(ỹi1) − h01(ỹi2).

The last equation arises because the four probabilities sum to one (Little & Rubin 2019,
example 1.19).

For a nonmonotone pattern like this, the causal interpretation of MAR is more fraught. In
particular, consider this pattern of missingness whenY1 andY2 are ordered sequentially over time.
MAR implies that missingness of Y2 can depend on the prior variable Y1 for cases where Y1 is
observed, andmissingness ofY1 can depend on the future variableY2 for cases whereY2 is observed.
This mechanism seems difficult to reconcile causally.

Robins & Gill (1997) define randomized monotone missingness (RMM) models and argue
that they represent the most general plausible physical mechanism for generating nonmonotone
ignorable data. They argue that ignorable mechanisms that are not RMM are inappropriate since
there is no physical mechanism for generating them. However, MAR for a nonmonotone pattern
is a weaker assumption than, say, sequential ignorability, so it may approximate an actual MNAR
mechanism more closely. Some have argued for omitting variables in an imputation model that
are not exogenous in the substantive causal model of interest. I believe this is a mistake because
the goal in imputation is to predict the missing values, with causal considerations entering in the
analysis model for the imputed data.
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There has been considerable debate about the interplay between causal inference and missing
data—some arguing that everything is a causal inference problem and others saying that eve-
rything is a missing-data problem. On the one hand, the Neyman/Rubin causal model defines
causal effects as a missing-data problem, where outcomes are defined under alternative treatments
and outcomes under treatments not assigned are missing (see, e.g., Rubin 1978, Imbens & Rubin
2015). On the other hand, modeling the missingness mechanism is clearly a causal exercise, even
if the final inference is descriptive rather than causal. Advocates of graphical causal models (e.g.,
Pearl et al. 2016) argue that these models enhance the ability to elucidate and determine restric-
tions that might identify MNAR models. The idea may have merit, although more real-world
examples would help to make the case to this observer.

I conclude this section with some other general comments about MAR.

1. MAR is often loosely described as “missingness does not depend on the missing data y(0)
after conditioning on the observed data ỹ(1).” This formulation is a statement of conditional
independence and, as such, describes MAAR rather than MAR, as discussed in Section 2.3.
The formulation works best for simple missingness patterns, such as when missingness is
confined to a single variable. In more complex cases, such as Example 3 above, it does not
capture the nuances of MAR so well because the nature of the conditioning on observed
data varies across patterns.

2. Some have objected to Rubin’s definition as unintuitive, particularly for nonmonotonemiss-
ingness patterns like Example 3 above; however, Rubin based his definition of MAR not on
intuitive notions, but rather as the weakest general condition under which pure likelihood
inference can be based on Lign(θ | ỹ(0) ) without needing a model for the missingness mech-
anism. An advantage of this approach is that intuitive notions of MAR may differ. I think
attempts to redefine MAR are likely to compound rather than alleviate confusion.

3. The unit MAR definition may appear to conflict with the intuitive idea that missingness
may be random for some units, but not random for others. For example, in a household
survey of individuals, some units in the sample may be unit nonrespondents for reasons
unconnected with survey variables and hence MAR—for example, they did not answer the
door because their alarm clock failed to wake them.Others, in contrast,may not respond for
reasons related to the survey and hence are not MAR—for example, they failed to respond
to a health survey because they were hospitalized and hence not at home. Expressions 11
and 12 should be interpreted as conditioning on the variables that are observed for some
units.When information on reasons for missingness is available, it is a good idea to include
it via covariates in the analysis. Latent reasons for missingness are not conditioned on, so the
different cases mentioned above are pooled, resulting in aggregate response probabilities.
Latent ignorable models, where missingness is modeled as a function of latent variables,
have been proposed in the literature (e.g., Barnard et al. 2002, Peng et al. 2004, Harel &
Schafer 2009, Beesley et al. 2019) and can be useful in particular situations. Since values of
the latent variable are not measured, these are examples of MNAR models.

4. MAR and distinctness are sufficient but not always necessary for ignoring the missingness
mechanism for pure likelihood inference—Rubin (1976) describes them as the weakest con-
ditions that can be applied generally, but in specific settings they can be weakened. The
following example is in Little et al. (2016).

Example 4 (An example where data are MNAR but the missingness mechanism is
ignorable). Suppose a random sample of size n is drawn from a finite population of size
N. Two variables, Y1 and Y2, are both observed (ri = 1) for i = 1, . . . ,m and both missing
(ri = 0) for m+ 1, . . . , n. Denote the resulting respondent data as Yresp. Suppose units are
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assumed to be independently distributed with density

fY (yi1, yi2 | θ ) = f1(yi1 | θ1) × f2(yi2 | yi1, θ2),

where θ1 and θ2 are distinct parameters; also,

fR |Y (ri = 1 | yi1, yi2,φ) = fR |Y (ri = 1 | yi1,φ) for all yi1, yi2,φ, 16.

so that missingness of Y1 and Y2 depends on Y1 but not Y2. Auxiliary data on the marginal
distribution of Y1 are also available for the whole population, say,Yaux = [y∗j1, j = 1, . . . ,N ],
so y(1) = [Yresp,Yaux]. The vector Yaux includes the respondent values of Y1 in Yresp, but the
linkage between Yaux and Yresp is broken (e.g., De Groot & Goel 1980), in the sense that
the set of m indices i = 1, . . . ,m in Yresp are an unknown set of the population indices j =
1, . . . ,N . Data of this form arise commonly in sample surveys, where the auxiliary data are
available for the entire population from a census.

The missingness mechanism (Equation 16) is MNAR because missingness of unit i depends on
the value yi1, which is missing for the incomplete cases. However, Little et al. (2016) show that the
missingness mechanism is ignorable because the parameters θ1 governing the marginal distribu-
tion ofY1 can be estimated fromYaux, and the parameters θ2 governing the conditional distribution
of Y2 given Y1 can be estimated from Yresp, without modeling the missingness mechanism.

2.6. Approaches to Likelihood-Based Inference with Missing Data

If we assume that missing data are MAR, analyses can be based on the ignorable likelihood, avoid-
ing the need to model the missingness mechanism. The main approaches are (a) asymptotic in-
ference based on the method of ML; (b) Bayesian inference based on the posterior distribution
obtained by multiplying the likelihood by a prior distribution for the model parameters; and
(c) MI, a variant of Bayesian inference where missing values are replaced by draws from their
predictive distribution, and inferences are based on Rubin’s MI combining rules (Rubin 1987).
Nearly all the software for analysis of data with missing values does not model the missingness
mechanism and hence implicitly assumesMAR.Little &Rubin (2019) provide extensive examples.

Two key and related challenges are that the MAR assumption cannot be directly tested from
the observed data without additional structural assumptions, and that MNAR models are often
difficult to specify correctly and may involve parameters that are unidentified or poorly identi-
fied from the data. Little & Rubin (2019, chapter 15) describe five approaches that address the
problems with fitting MNAR models:

1. Follow up a sample of nonrespondents and incorporate this information into the main
analysis.

2. Adopt a Bayesian approach, assigning the parameters prior distributions. Bayesian inference
does not generally require that the parameters are identified, although inferences may be
weak and sensitive to the choice of prior distribution.

3. Impose restrictions on model parameters, specifically, setting to zero coefficients in the
models for the outcome or response.

4. Conduct analysis to assess sensitivity of inferences for quantities of interest to different
choices of the values of parameters poorly estimated from the data.

5. Selectively discard data to avoidmodeling themissingnessmechanism.Sometimes aMNAR
missingness mechanism can be ignorable after discarding some observations (see Little &
Zhang 2011, Little et al. 2016).
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3. SOME NON-LIKELIHOOD-BASED APPROACHES TO THE ANALYSIS
OF DATA WITH MISSING VALUES

3.1. Introduction

Seaman et al. (2013) distinguish between (a) frequentist ML inference based on the asymptotic
distribution of the ML estimate θ̂ of θ and (b) other forms of frequentist inference. I discuss suffi-
cient conditions for a in Section 2.3. Sufficient conditions for b are harder to elucidate since it is
less clear what it means—any form of inference, including Bayes, can be viewed with a frequentist
lens, in the sense that it has frequentist properties in repeated sampling. Rubin (1976) showed2

that for general frequentist inference to be valid it was sufficient that the data are MCAR, defined
as

fR |Y (R = r̃ | y,φ) = fR |Y (R = r̃ | y∗,φ) for all y, y∗ and φ. 17.

Note that, as with the definition of MAR, MCAR does not assume independence of R and Y
because the equality in Equation 17 is only for the observed value r̃ of R. Independence is implied
by the condition calledmissing always completely at random (MACAR) byMealli &Rubin (2015):

fR |Y (R = r | y,φ) = fR |Y (R = r | y∗,φ) for all r, y, y∗ and φ. 18.

To illustrate the difference betweenMACAR andMCAR, consider a sample survey with two types
of nonresponse: unit nonresponse, where all the survey variables are missing, and item nonre-
sponse, where at least one of the survey variables is recorded. Suppose that unit nonresponse
depends on the values of survey variables, but item nonresponse is completely at random; that is,
it does not depend on any of the survey variables. In the observed sample, there happens to be no
unit nonresponse; that is, the only missing values are from item nonresponse. Then the missing-
ness mechanism for that survey is MCAR, but it is not MACAR, because unit nonresponse occurs
in hypothetical repetitions of the survey, and for those data sets the data are not MCAR.

Assuming independence of units, the MCAR condition becomes unit MCAR,

fR |Y (Ri = r̃i | yi,φ) = fR |Y (Ri = r̃i | y∗i ,φ) for all i, yi, y∗i , and φ.

There is some confusion in the literature about whether missingness that depends only on fixed
covariates, as in Equation 14 in Example 1, isMCAR orMAR. It isMAR but notMCAR according
to Rubin’s (1976) original terminology, but some have defined it as MCAR. Arguments can be
made on both sides of this terminological issue; I have opted to stick with Rubin’s original framing
and have used the term “covariate-dependent missingness” for this type of mechanism (Little
1995).

Most of the literature on incomplete data that is not based on likelihoods concerns weighted
versions of GEE applied to the complete cases, and augmented versions that incorporate predic-
tions of the missing values. I discuss this literature in the next section.

3.2. Complete-Case Analysis

A common strategy when faced with nonresponse is simply to discard units withmissing values and
analyze the remaining complete cases.This approach is justified if the information in the discarded
incomplete cases for the estimand of interest is small relative to the information in the complete

2Rubin (1976) defined a condition, observed at random (OAR), which is no longer in common usage. MCAR
is equivalent to the combination of both MAR and OAR; according to Mealli & Rubin (2015), MCAR was
first defined in Marini et al. (1980).
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cases. A common question is,How small is small enough?This is not straightforward, as it depends
on the specifics of the analysis. Consider, for example, a situation where a variable Y has missing
values, and a set of variables X is fully observed. The incomplete units with only X measured can
have considerable information for inference about the marginal mean of Y, particularly if X is
highly predictive of Y.However, if missingness depends only on the Xs—that is, the missingness
mechanism isMAR and the distinctness condition of Lemma 2 applies—then the incomplete units
carry no information at all for the parameters of the regression of Y on X and can be discarded
(Little & Rubin 2019, section 3.2).

The assumption ofMCAR is often stated as being a requirement for the validity of CC analysis.
It is sufficient for CC analysis to be valid, but whether it is necessary depends on the specifics of
the analysis, and in particular on the estimand. In the example just discussed, CC analysis for the
marginal distribution of Y generally requires MCAR, but CC analysis for the regression of Y on
X remains valid under MAR; that is, it is valid if missingness depends on the covariates X. This
continues to be true when there are missing values of the covariates, provided the probability
of being complete does not depend on the outcome. That condition includes MNAR situations
where missingness depends on values of covariates that are sometimes missing.

3.3. Weighted Complete-Case Analysis

In sample surveys where units have differing probabilities of selection, analyses generally weight
units by their sampling weights, defined as the inverse of the probability of selection. With miss-
ing data, an analogous approach is nonresponse weighting,which weights the completely observed
units by the inverse of their probability of response. Unlike probability sampling, these weights
are unknown and need to be estimated from the data. A simple version of this is adjustment cell
weighting, where cells are created with similar values of fully observed covariates, and the weights
of respondents in a cell are proportional to the inverse of the response rate in that cell. More
generally, weights can be the inverse of estimated response propensity from a regression of the re-
sponse indicator on fully observed covariates.When applied to estimates from GEE, this strategy
is called inverse-probability weighted GEE.

Weighted CC analysis is popular because it is relatively simple, but it has some important
limitations:

1. It is based on an assumption of covariate missingness—that is, the probability of being com-
plete is assumed to depend only on the fully observed covariates. For unit nonresponse,
where values of the variables Y with missing values are either fully observed or completely
missing, this is equivalent to MAR. For more general patterns of missing data, MAR is a
weaker assumption than covariate missingness because it also allows missingness to depend
on observed values of Y.

2. Unlike likelihood-based methods, weighted CC analysis is not efficient, and it can be highly
inefficient if weights are highly variable and not predictive of the Y variable of interest.

3. Extensions of weighting to monotone missing data are possible (Little & David 1988), but
there is no satisfactory generalization to nonmonotone patterns.The complete cases can still
be weighted, but information in the incomplete cases is not exploited.This is one reasonwhy
weighting is not the preferred approach to item nonresponse in surveys, which generally
does not have a monotone pattern.

Augmented inverse-probability weighted GEE is an extension of inverse-probability weighted
GEE that creates predictions from amodel to recover information in the incomplete units and ap-
plies inverse-probability weighted GEE to the residuals from the model. This approach achieves
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a gain in efficiency under a strong prediction model and has the property known as double ro-
bustness, meaning that it yields consistent estimates if either the model used to create predictions
of the missing values, or the model used to estimate the propensity to respond, is correct (Robins
et al. 1995, Robins & Rotnitzky 1995, Lipsitz et al. 1999). The methods as implemented generally
assume MAR, although weights can be created for MNAR models; see, in particular, Scharfstein
et al. (1999) and the discussion of that paper.

Example 5 (Regression with an incomplete covariate). Suppose interest concerns the
regression of Y on X1,...,Xp, where one of the covariates, say X1, has missing values, and the
other variables X2, . . . ,Xp,Y are fully observed. The incomplete cases with X1 missing then
have considerable information for the intercept and coefficients of X2, . . . ,Xp but very lim-
ited information for the coefficient of X1 (Little 1992). The incomplete cases are thus of
limited value if the primary interest is in the coefficient of X1, but they are of considerably
more value if the primary interest is in other coefficients. In particular, if X1 is weakly asso-
ciated with Y, the incomplete cases have about as much information as the complete cases
for these other regression coefficients.

If the missingness mechanism is MAR, and missingness depends on the outcome Y, then
inverse-probability weighting of the complete cases can reduce bias in the estimated re-
gression coefficients. However, if missingness depends on the covariates X but not on the
outcomes, unweighted CC analysis yields consistent (though potentially inefficient) esti-
mates of the regression coefficients, and inverse-probability weighting of the complete cases
can be biased. Thus, the question of whether weighting leads to improved estimates of the
regression coefficients depends on the missingness mechanism.

4. OTHER DEFINITIONS OF MISSINGNESS MECHANISMS

4.1. Informative Missingness

The related terms “informative missingness” and “informative censoring” and their relationship
with the definitions of missingness mechanisms discussed above are a source of much confusion.
Wu & Carroll (1988) introduced the term “informative censoring” in the course of modeling
repeated-data measures data Y that are right censored or missing observations caused by the par-
ticipant’s death or withdrawal. The idea is that the fact and time of death informs the relationship
between Y and time T, modeled in the paper as linear with random individual slopes and inter-
cepts. Note that this is not the same as censored data in the usual survival analysis setting, where
survival time is right-censored for individuals still alive at the end of the study; it is the values of
Y after death that are unobserved, not the survival times. Including death and withdrawal as the
reason for their lack of observation is potentially confusing because, unlike the case of withdrawal,
values of Y after death are not (according tomy definition) missing data unless they are meaningful
for analysis. In particular, the outcome in Wu & Carroll’s (1988) application is forced expiratory
volume (FEV), which is not meaningful for analysis after death.

Another point of confusion is that the missing values of Y, if considered missing, are not cen-
sored in the usual survival analysis sense of having an unknown value beyond a censoring point,
but instead are entirely unobserved. The term “informative censoring” is also used in the classical
survival analysis setting, where it means something entirely different (see Section 4.4 for details).

Wu & Carroll (1988) did not use the term “informative missingness,” but because the model
concerned missing values of Y, it was a small step from their term “informative censoring” to
“informative missingness.” This term was indeed used in a similar context by Follman & Wu
(1995), Wu & Follman (1998) and Park et al. (2002). My view is that values like blood pressure,
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quality of life, or FEV that are censored by death are not examples of informative missingness
because they should not be considered missing values.

In Wu & Carroll’s (1988) repeated measures model, missingness of Y was assumed to depend
on the unobserved values of the random slope and intercept. Because these random effects are not
observed, the resultingmechanism isMNAR and hence is nonignorable, according to Rubin’s defi-
nitions. Informativemissingness is often used as a pseudonym forMNAR or nonignorable (Diggle
& Kenward 1994) without addressing the parameter distinctness that distinguishes these terms.
In the context of missing outcome data, some authors use the term to mean that the distribution
of an outcome variable is different for observed and missing cases, perhaps after conditioning on
fully observed covariates (e.g., Allen et al. 2003, Higgins et al. 2008). It is unclear how that usage
extends to more general patterns of missing data.

In the Statistical Analysis System (2017) manual of data mining, the term “informative missing-
ness” is used to describe a class of models that include indicators for missing values as predictors,
a very particular type of MNARmodels (Little 2020). This inclusion of missing-data indicators as
predictors in imputation is quite common in the machine learning literature.

Given all this semantic confusion,my recommendation is to avoid the terms “informative miss-
ingness” and “informative censoring.”

4.2. Partial Missing at Random and Ignorability for Parameter Subsets

The definitions of MAR and ignorable missingness apply to the full set of parameters θ in the
data model. Write θ = (θ1, θ2), where θ1 and θ2 are subsets of the components of the model for
the data X in Equation 1. Little et al. (2016) define the data as partially MAR for direct likelihood
inference about θ1, denoted P-MAR(θ1), if the likelihood (Equation 2) can be factored as

Lfull (θ1, θ2,φ | x̃(1), r̃) = L1(θ1 | x̃(1) ) × Lrest (θ2,φ | x̃(1), r̃) for all θ1, θ2,φ, 19.

where L1(θ1 | x̃(1) ) does not involve the model for the missing-data mechanism and
Lrest(θ2,φ | x̃(1), r̃) does not involve the parameters θ1. The “partially” in P-MAR(θ1) refers to the
fact that θ1 can be a subset of θ .

Paralleling Lemma 2, the data are ignorable for direct likelihood inference about θ1, denoted
IGN(θ1), if (a) the missing-data mechanism is P-MAR(θ1) and (b) θ1 and (θ2,φ) are distinct sets of
parameters in the sense defined by Rubin (1976). If the mechanism is P-MAR(θ1) but θ1 and (θ2,φ)
are not distinct parameters, partial likelihood inference (Cox 1975) based on L1(θ1 | x̃(1) ) is valid
but not fully efficient and might still be adopted to avoid the additional assumptions involved
in modeling the missingness mechanism. The partial likelihood L1(θ1 | x̃(1) ) can also be com-
bined with a prior distribution π1(θ1) for θ1 to obtain a form of pseudo-Bayesian inference,
which is not fully Bayes but again avoids the need to model the missingness mechanism. This
approach to inference has been proposed and discussed in other contexts (for example, Sinha &
Ibrahim 2003, Ventura et al. 2009, Pauli et al. 2011). Little & Zhang (2011) give an application of
P-MAR to regression models, selectively discarding data to avoid the need to model a MNAR
mechanism.

When θ1 = θ , P-MAR and distinctness are weaker than Rubin’s (1976) original conditions
of MAR and distinctness. The distinctness condition reduces to distinctness between θ and φ,
as defined in Section 2.2. The P-MAR(θ1) condition, Equation 19, with θ1 = θ is less restric-
tive than Rubin’s MAR definition, Equation 3, but it does imply the factorization in Equation 4,
which is the key condition for validity of inferences about θ based on the ignorable likelihood
(Equation 1).
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4.3. Missingness as a Coarsening Mechanism

Missing values can be viewed as a form of data coarsening.Heitjan&Rubin (1990),Heitjan (1994),
and Jacobsen & Keiding (1995) develop a more general theory for coarsened data that includes
heaped, censored, and grouped data as well as missing data.

Denote byY = {yi j} the complete-data matrix in the absence of coarsening, and let fY (y | θ ) de-
note the density of Y under a complete-data model with unknown parameter θ . The observed data,
say yi j(1), for each value yi j are that yi j lies in a subset of its sample space 	i j , which is determined
by a function yi j(1) = yi j(1)(yi j , ci j ) of yi j and a coarsening variable ci j , subject to the condition that
the coarsened subset contains the unobserved true value, that is yi j ∈ yi j(1)(yi j , ci j ). For the special
case of missing data discussed so far,C = {ci j} is simply the matrix of binary missingness indicators,
and

yi j(1) =
{

{yi j}, the set consisting of the single true value, if ci j = 0
	i j , the sample space ofyi j , if ci j = 1

.

Uncertainty in the degree of coarsening is modeled by assigning C a probability distribution with
conditional density given Y= y equal to fC |Y (c | y,φ).Write y = (y(0), ỹ(1) ) and c = (c(0), c̃(1) ), where
y(0) and ỹ(1) are respectively the missing and observed components of Y, and c(0) and c̃(1) are the
missing and observed components of C. The full coarsened-data likelihood is then

Lfull (θ ,φ | ỹ(1), c̃(1) ) =
∫ ∫

fC |Y (c(0), c̃(1) | y(0), ỹ(1),φ) fY (y(0), ỹ(1) | θ )dy(0)dc(0),

and the likelihood ignoring the coarsening mechanism is

Lign(θ | ỹ(1) ) =
∫

fY (y(0), ỹ(1) | θ )dy(0).

The following definitions and lemma generalize the ideas of MAR and ignorable missingness
mechanisms to coarsened data:

� Coarsened at random (CAR): The data are CAR at the observed values y(1) = ỹ(1), c(1) = c̃(1)
if

fC |Y (c(0), c̃(1) | y(0), ỹ(1),φ) = fC |Y (c∗(0), c̃(1) | y∗(0), ỹ(1),φ) for all c(0), c∗(0), y(0), y∗(0),φ.

� Ignorable coarsening mechanism: The coarsening mechanism is ignorable if inference for
θ based on Lign is equivalent to inference based on the full likelihood Lfull.

Conditions for ignoring the coarsening mechanism parallel the conditions for ignoring the
missingness mechanism. In particular, sufficient conditions for ignoring the coarsening mecha-
nism for likelihood inference at ỹ(1) and c̃(1) are that (a) the data are CAR, and (b) the parameters
θ and φ are distinct. Sufficient conditions for ignoring the coarsening mechanism for Bayesian
inference are that (a) the data are CAR, and (b) the parameters θ and φ have independent prior
distributions.

A particular form of coarsening is right-censoring in survival data, and in that setting, “not
CAR” is somewhat analogous to the term “informative censoring” in the survival analysis litera-
ture, a term that, like “informative missing data,” is not clearly defined.Note that MAR is a special
case of CAR, but right-censored data that is CAR is not MAR because missingness depends on
the underlying survival time, which is missing for the censored cases.
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5. CONCLUSION

With missing data, as a rule there is no such thing as an assumption-free lunch; no analysis of data
with missing values, frequentist or model based, is valid for all possible missingness mechanisms,
and every methodological article that promises an assumption-free analysis has assumptions lurk-
ing somewhere, even if they are not explicitly stated. The only exception to this rule is planned
missing data, where a missingness pattern is deliberately created, for example by restricting an
expensive measurement to a random subset of units. Thus, the best advice is to not have missing
data, or at least to take steps to limit the problem. This is particularly true in areas of statistics
where the goal is to limit assumptions, such as randomized clinical trials for assessing medical
treatments (see, e.g., NRC 2010).

This review has emphasized the centrality of Rubin’s (1976) MAR condition in the analysis of
data with missing values, particularly for likelihood-based inference methods.Most existing meth-
ods for such data sets assume MAR, and relaxing the MAR assumption trades that assumption for
others or explores deviations fromMAR by some form of sensitivity analysis. The problem is that
we usually cannot tell from the observed data whether or not MAR applies. Rubin himself has
argued that with a sufficiently rich set of observed data, MAR is often justified. One empirical
example in favor of this view is missing data in the income supplement of the US Current Popu-
lation Survey, where substantial information is available on income nonrespondents, and a match
to an alternative data source suggested that MAR was reasonable. This example is discussed by
Little & Rubin (2019, chapter 15). Given this situation, it is important to consider how to make
MAR plausible in the design stage of studies by taking steps to limit missing data and collecting
covariates that are good predictors of missing values.

For non-likelihood approaches, MAR works in some instances, but stronger conditions such
as MCAR or MACAR may be needed, particularly in small samples. My personal view is that
Bayesian inference is the best approach to small-sample inference with general patterns of missing
data, particularly if MAR can be adequately justified by the availability of good covariates.
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