flowchart LR id2-->id3 id4 --> id5 subgraph Collection id1[Data collection]-->id2[Data cleaning and pre-processing] end subgraph Modelling id3[Exploratory data analysis]--> id4[Modelling] end subgraph Postprocessing id5[Postprocessing] end
DS101 – Fundamentals of Data Science
04 Dec 2023
For more on Delphi, see (Piper 2021) and (Noor 2021)
🗣️ Reading/Discussion:
…Artificial Intelligence (AI) entails several potential risks, such as opaque decision-making, gender-based or other kinds of discrimination, intrusion in our private lives or being used for criminal purposes. European commission white paper, 2020
flowchart LR id2-->id3 id4 --> id5 subgraph Collection id1[Data collection]-->id2[Data cleaning and pre-processing] end subgraph Modelling id3[Exploratory data analysis]--> id4[Modelling] end subgraph Postprocessing id5[Postprocessing] end
flowchart LR id2-->id3 id4 --> id5 subgraph Collection id1[Data collection]-->id2[Data cleaning and pre-processing] end subgraph Modelling id3[Exploratory data analysis]--> id4[Modelling] end subgraph Postprocessing id5[Postprocessing] end id6[Dataset not representative of population] --> Collection id7[Dataset reflecting structural inequalities or biases in society] --> Collection id8[Improperly labelled data] --> Collection id9[Consent procedures?] --> Collection
flowchart LR id2-->id3 id4 --> id5 subgraph Collection id1[Data collection]-->id2[Data cleaning and pre-processing] end subgraph Modelling id3[Exploratory data analysis]--> id4[Modelling] end subgraph Postprocessing id5[Postprocessing] end id6[Dataset not representative of population] --> Collection id7[Dataset reflecting structural inequalities or biases in society] --> Collection id8[Improperly labelled data] --> Collection id9[Consent procedures?] --> Collection id10[Improper algorithm design] --> Modelling id11[Wrong feature selection] --> Modelling id12[<a href='https://www.youtube.com/watch?v=sxYrzzy3cq8'>Simpson's paradox</a>] --> Modelling id13[Inappropriate model selection e.g restrictive hypotheses or vulnerability to adversarial attacks] --> Modelling id14[Inappropriate evaluation metric selection] --> Modelling id15[Undesirable hidden data correlations classifiers pick up on during training] --> Modelling
flowchart LR id2-->id3 id4 --> id5 subgraph Collection id1[Data collection]-->id2[Data cleaning and pre-processing] end subgraph Modelling id3[Exploratory data analysis]--> id4[Modelling] end subgraph Postprocessing id5[Postprocessing] end id6[Dataset not representative of population] --> Collection id7[Dataset reflecting structural inequalities or biases in society] --> Collection id8[Improperly labelled data] --> Collection id9[Consent procedures?] --> Collection id10[Improper algorithm design] --> Modelling id11[Wrong feature selection] --> Modelling id12[<a href='https://www.youtube.com/watch?v=sxYrzzy3cq8'>Simpson's paradox</a>] --> Modelling id13[Inappropriate model selection e.g restrictive hypotheses or vulnerability to adversarial attacks] --> Modelling id14[Inappropriate evaluation metric selection] --> Modelling id15[Undesirable hidden data correlations classifiers pick up on during training] --> Modelling id16[Erroneous interpretations and/or decision-making] --> Postprocessing
AI explainability refers to easy-to-understand information explaining why and how an AI system made its decisions.
Some of the post-hoc model-agnostic explanation methods:
See this page for more on explainable AI (XAI). For an application to LIME and Shapley values in finance (credit default estimation), see (Gramegna and Giudici 2021)
Example from (Ribeiro, Singh, and Guestrin 2016):
You can also have a look at the OECD dashboard for a fuller overview of national AI strategies and policies.
LSE DS101 2023/24 Autumn Term | archive